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What are dueling bandits?
• The K-armed dueling bandits (Yue et al, COLT 2009):  

• K arms (aka actions) 
• Each time-step:  

➡ the algorithm chooses two arms, l and r (for “left” 
and “right”); 

➡ the dueling happens between l and r with one 
returned as the winner. 

• Goal: converge to the optimal play for both l and r.
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What is the optimal play?

• Notation:                 is the preference matrix with 

• Assumption: there exists one arm that on average beats 
all the other arms: called the Condorcet winner.  

• Regret: the loss of comparing non-Condorcet winner.  

• Optimal play: only play the Condorcet winner, i.e. 
choose the Condorcet winner as l and r.

P1j > 0.5 for all j 6= 1

P := [Pij ]
Pij = Pr(arm i beats arm j)

rt = 0.5 ⇤ (P1l � 0.5) + 0.5 ⇤ (P1r � 0.5)
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Related works
• DTS (Wu et al. NIPS 2016), etc. 

Limited to small scale set up, i.e. K is small 

• Self-Sparring (Sui et al. UAI 2017) , etc. 
Designed under strict assumptions, i.e. not cyclic 
relationship 

• MergeRUCB (Zoghi, WSDM 2014) 
Designed for large scale dueling bandits yet with high 
cumulative regret
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Merge Double Thompson Sampling
• Randomly partition arms into small groups.  
• Each time step: 

1. Sample a tournament inside a small group; 
2. Choose the winner and loser of the 

tournament as l and r, respectively; 
3. Compare l and r online, and update statistic; 
4. Eliminate an arm if it is dominated by any other 

arm with high confidence.  
5. If half arms are eliminated, re-partition rankers.  

• Stop if only one arm left. 
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Experiment: online ranker evaluation
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MergeRUCB ↵ = 0.86

DTS ↵ = 0.86

Self-Sparring

MergeDTS ↵ = 0.86


